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Problem Formulation

Cascading Network Failure

@ To predict cascading failure in large-scale networks, solid understanding of
propagations of failures in small-scale networks is vital.
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Problem Formulation

Cascading Network Failure

@ To predict cascading failure in large-scale networks, solid understanding of
propagations of failures in small-scale networks is vital.

@ This allows optimal redistribution of loads and network design.
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Problem Formulation

Network Model(s): |

o Eight-node, Eleven-branch circuit is used as a toy model.
o Model state

x= |q| €R*® (1)
v

where

1) ¢ is a vector of nodal flux differences ( ¢ € R),
2) q is the vector of nodal charges on capacitors ( q € R?),
3) « is the failure state of branches ( v € R!),

Ahmed Attia Supervised by: Mihai Anitescu Derivative-based solution of the optimization problem(s) in DeMarco’s model



Problem Formulation

Network Model(s): II

@ DeMarco's original model equations
dp = ETC lqdt (2)
dq — (—E,H,L*lH,T ¢ — GClq+ iin> dt, (3)

Ahmed Attia Supervised by: Mihai Anitescu Derivative-based solution of the optimization problem(s) in DeMarco’s model



Problem Formulation

Network Model(s): II

@ DeMarco's original model equations

dp = ETC lqdt (2)
dq = (—E,H,L*lH,T ¢ — GClq+ iin> dt, (3)
@ Stochastic Version of the model
do| _
[dq] = M+P+U (4)

ETC 1q(t)dt N 0 N 0
0 —EH,L7YHT ¢(t)dt —GClq(t)dt + V2GT dW, |~

- fy : the current input, T : system's temperature,
- C, E,, H,, L, G: constant matrices,
- M, P, U: system’s mass, potential, Ornstein Uhlenbeck process.
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Problem Formulation

Time stepping: A Splitting Solver

The integrator is a composition of maps

[ﬁgg] =P oM;oU;oM;oP; <[ﬁggg]> (5)
(o) = 1 50 ) ©)
A (ﬁ%) RO Eﬁ,(leHI ¢(0)t] ’ (7)
Ue <ﬁg8§> - _e*GCﬂfq(o) + \/QST(S')(/ — e26C1) d] ; (8)

Where t is the step size, and d is the stochastic force.
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Problem Formulation

Optimization problems

Since we are interested in failure, we ask how the white noise might steer the system
towards increasing energy.
@ The exact problem:

N
min di,do,....dy) =) dd, 9
dl,dz,...,de( 1,do N) ; (9)

subject to
max (En) > e. (10)

Solving the exact problem requires solving one optimization problem for each line.
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Problem Formulation

Optimization problems

Since we are interested in failure, we ask how the white noise might steer the system
towards increasing energy.
@ The exact problem:

N
min di,do,....dy) =) dd, 9
dl,dz,...,de( 1,do N) ; (9)

subject to
max (En) > e. (10)

Solving the exact problem requires solving one optimization problem for each line.
@ A proxy problem: replace constraint with:

INEn >¢, (Or ENEn>€) (11)

where Ep is the energy function, and Iy is a vector of all ones.
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Energy Function

%Lfl“ﬂ (—(én)1)?
%LE 72 (—(dn)2)?
(on)1 1L3 e ((6n)2 — (¢n)s)
(én)2 2L M8 ()1 — (6n)3)°
(én)s3 1L5 s ()3 — (¢n)a)’
En(on) = En | |(on)a| | = | 3L 6 ((9n)3 — (¢n)s)? (12)
(o) 5 ((én)1 — (on)s)
(o) ((&n)a — (on)s)
(on) ¢> ) 7)
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Problem Formulation

Probability of Failure(s)

We can compute the probability of one failure (at time ty) from optimal noise vectors
dl,dl, . d/\/ via
Syl

P(Failure|d;, dy,...dy) =e 7 (13)

Multiple failure is an enumeration problem solved by exhaustive search.
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Derivative Information

Derivative Information: |

We have reformulated the splitting solver as linear discrete map:

x; = Ax;_1 + Bd;, (14)
The blocks of A are:
B 2
Ay = [+ (EfCcH(+e ¢ h)(—E,H,L—lHI)(%) (15)
As = (E7CH(1+e e M)(D) (16)
2 1
Aox = ((CEMLHIETCIC) 1) 1+ e S ERLHIG) (17
1 2 —1
Ay = (—EHLYHTYETCY)(I+e ¢ ”)(%) + (e N (18)
Al = A3=A31=~A3,=0; A33=1 (19)
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Derivative Information

Derivative Information: Il

B reads

(ETC)/rC(I — e-26¢h)(B)
B = ((-EH L HT)ETCH(5) +1) /7C(I = e 25C ) (20)

the derivatives read

Ve Xi = AK Vk=1,2,...,i—1 (21)
Vi xi = A*B Vk=0,1,...,i—1 (22)
VaEn = (VouEn)(Vaon)
= (Eng)(Vg,0n) Vi=1,2,...,N (23)
Eng = % € R1%7 is the Jacobian of the energy functional w.r.t flux differences.
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Derivative Information

Derivative Information: |l

@ Gradient of the cost function:
Viarapaprd =2 |9 (24)

e Gradient of the constraint(s):

(Va, En)" En

(Va, En) " En

Vou (INEn) = EngIn: Vo (En En) =2 (25)

(VaEn)" En
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Results

Results I: Probability of failure(s)

(a) One failure (b) Two failures (c) Three failures (d) Four failures

Figure: Probability of line failure(s). One, two, three, and four failures are plotted.
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Results

Results I1l: Probability of failure(s)

Probability of failure
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(a) One failure (b) Two failures

Figure: Probability of line failure(s) on higher resolution grid
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Results

Results 1V: Probability of failure(s)
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Figure: Relation between probability of branch failures and system's temperature.
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Results

Results V: Computational Time
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Figure: CPU-time of the optimization step for one failure case with and without derivative

information.
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Questions
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